Electricity & Magnetism
EQUATIONS
|
INFORMATION
|
$$ \large F_e = \frac{kq_1 q_2}{r^2} $$
|
\(\\ {F_e} = electrostatic \hspace{4 pt} force \hspace{4 pt} (N) \\ \textbf{k} = electrostatic \hspace{4 pt} constant \\ \hspace{5 pt} (8.988 \hspace{2 pt} x \hspace{2 pt} 10^9 \hspace{4 pt} N \hspace{2 pt} m^2 \hspace{4 pt} C^{-2}) \\ {q_{\#}} = charge \hspace{4 pt} \# \hspace{4 pt} (C)\\ \textbf{r} = distance \hspace{4 pt} between \hspace{4 pt} the \hspace{4 pt} charges (m)\) |
|
$$ \large R = \frac{\rho L}{A} $$
|
\(\\ \textbf{R} = resistance \hspace{4 pt} (\Omega) \\ {\rho} = resistivity \hspace{4 pt} (\Omega \hspace{2 pt} m) \\ \textbf{L} = length \hspace{4 pt} of \hspace{4 pt} the \hspace{4 pt} conductor \hspace{4 pt} (m)\\ \textbf{A} = cross-sectional \hspace{4 pt} area \hspace{4 pt} of \\ \hspace{8 pt} the \hspace{4 pt} conductor \hspace{4 pt} (m^2) \) |
|
$$ \large W = Pt = VIt = I^2Rt = \frac{V^2t}{R} $$
|
\(\\ \textbf{W} = work \hspace{4 pt} (J) \\ \textbf{P} = power \hspace{4 pt} (W) \\ \textbf{t} = time \hspace{4 pt} (s) \\ \textbf{V} = potential \hspace{4 pt} difference \hspace{4 pt} (V) \\ \textbf{I} = current \hspace{4 pt} (C)\\ \textbf{R} = resistance \hspace{4 pt} (\Omega)\) |
|
$$ \large
I_{tot} = I_1 = I_2 = I_3 = ... $$ $$ \large
V_{tot} = V_1 + V_2 + V_3 + ... $$ $$ \large
R_{tot} = R_1 + R_2 + R_3 + ... $$
|
\(\\ {I_{tot}} = overall \hspace{4 pt} current \hspace{4 pt} (A) \\ {I_{\#}} = current \hspace{4 pt} in \hspace{4 pt} segment \hspace{4 pt} \# \hspace{4 pt} (A) \\ {V_{tot}} = potential \hspace{4 pt} difference \hspace{4 pt} of \hspace{4 pt} circuit \hspace{4 pt} (V) \\ {V_\#} = potential \hspace{4 pt} difference \hspace{4 pt} through \\ \hspace{14 pt} segment \hspace{4 pt} \# \hspace{4 pt} (V) \\ {R_{tot}} = total \hspace{4 pt} resistance \hspace{4 pt} (\Omega) \\ {R_{\#}} = resistance \hspace{4 pt} through \hspace{4 pt} segment \hspace{4 pt} \# \hspace{4 pt} (\Omega)\) |
|
$$ \large
I_{tot} = I_1 + I_2 + I_3 + ... \\ $$ $$ \large
V_{tot} = V_1 = V_2 = V_3 = ... \\ $$ $$ \large
\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + ... $$
|
\(\\ {I_{tot}} = overall \hspace{4 pt} current \hspace{4 pt} (A) \\ {I_{\#}} = current \hspace{4 pt} in \hspace{4 pt} segment \hspace{4 pt} \# \hspace{4 pt} (A) \\ {V_{tot}} = potential \hspace{4 pt} difference \hspace{4 pt} of \hspace{4 pt} circuit \hspace{4 pt} (V) \\ {V_\#} = potential \hspace{4 pt} difference \hspace{4 pt} through \\ \hspace{14 pt} segment \hspace{4 pt} \# (V) \\ {R_{tot}} = total \hspace{4 pt} resistance \hspace{4 pt} (\Omega) \\ {R_{\#}} = resistance \hspace{4 pt} through \hspace{4 pt} segment \hspace{4 pt} \# \hspace{4 pt} (\Omega)\) |
|
$$ \large
c = \nu \lambda $$
|
\(\\ \textbf{c} = speed \hspace{4 pt} of \hspace{4 pt} light \hspace{4 pt} (3.00 \hspace{2 pt} m \hspace{2 pt} s^{-2}) \\ {\nu} = frequency \hspace{4 pt} of \hspace{4 pt} light \hspace{4 pt} (Hz) \\ {\lambda} = wavelength \hspace{4 pt} of \hspace{4 pt} light \hspace{4 pt} (m)\) |
|
$$ \large n = \frac{c}{v} $$
|
\( \textbf{n} = index \hspace{4 pt} of \hspace{4 pt} refraction \\ \textbf{c} = speed \hspace{4 pt} of \hspace{4 pt} light \\ \hspace{4 pt} (3.0 \hspace{2 pt} x \hspace{2 pt} 10^8 \hspace{4 pt} m \hspace{2 pt} s^{-1}) \\ \textbf{v} = speed \hspace{4 pt} of \hspace{4 pt} light \hspace{4 pt} in \\ \hspace{8 pt} the \hspace{4 pt} substance \hspace{4 pt} (m \hspace{2 pt} s^{-1}) \) |
|
$$ \large \frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{{\lambda}_2}{{\lambda}_1} $$
|
\( n_{\#} = absolute \hspace{4 pt} index \hspace{4 pt} of \hspace{4 pt} refraction \\ \hspace{8 pt} of \# \hspace{4 pt} medium \\ n_{\#} = velocity \hspace{4 pt} in \hspace{4 pt} medium \hspace{4 pt} (m \hspace{2 pt} s^{-1} \\ \lambda_{\#} = wavelength \hspace{4 pt} in \hspace{4 pt} medium \hspace{4 pt} (m) \) |
|
$$ \large
E = h\nu = \frac{hc}{\lambda} $$
|
\( \textbf{E} = energy \hspace{4 pt} of \hspace{4 pt} a \hspace{4 pt} photon \hspace{4 pt} (J) \\ \textbf{h} = Planck's \hspace{4 pt} constant \hspace{4 pt} (6.625 \hspace{2 pt}x \hspace{2 pt} 10^{-34} J \hspace{2 pt} s ) \\ {\nu} = frequency \hspace{4 pt} of \hspace{4 pt} the \hspace{4 pt} light \hspace{4 pt}(Hz) \\ \textbf{c} = speed \hspace{4 pt} of \hspace{4 pt} light \hspace{4 pt} (3.0 \hspace{2 pt} x \hspace{2 pt} 10^8 \hspace{4 pt} m \hspace{2 pt} s^{-1}) \\ {\lambda} = wavelength \hspace{4 pt} (m) \) |
|