EQNS | Solutions to Life's Problems
  • Subjects
    • Astronomy >
      • High School Astronomy
      • College Astronomy >
        • College Cosmology
        • Galaxy Formation and Evolution
        • General Astronomy
        • Observational Astronomy
        • College Stellar Astrophysics
    • Chemistry >
      • High School Chemistry >
        • AP Chemistry
        • High School General Chemistry
      • College Chemistry >
        • Environmental Chemistry
        • General College Chemistry
    • Geology >
      • High School Geology
    • Physics >
      • High School Physics >
        • Introductory HS Physics >
          • High School Mechanics
          • High School Electricity & Magnetism
        • AP Physics B >
          • AP Physics B Mechanics
          • AP Physics B Oscillations and Waves
          • AP Physics B Thermodynamics
          • AP Physics B Electricity & Magnetism
          • AP Physics B Light and Optics
          • AP Physics B Modern Physics
        • AP Physics C >
          • AP Physics C Mechanics
          • AP Physics C Oscillations and Waves
          • AP Physics C Thermodynamics
          • AP Physics C Electricity & Magnetism
          • AP Physics C Light and Optics
          • AP Physics C Modern Physics
      • College Physics >
        • Introductory General Physics >
          • Introductory Classical Mechanics
          • Introduction to Oscillations and Waves
          • Introduction to Thermodynamics
          • Introduction to Electricity & Magnetism
          • Introduction to Light and Optics
          • Introduction to Modern Physics
        • Introductory General Physics with Calculus >
          • Introductory Classical Mechanics with Calculus
          • Introduction to Oscillations and Waves with Calculus
          • Introduction to Thermodynamics with Calculus
          • Introduction to Electricity & Magnetism with Calculus
          • Introduction to Light and Optics with Calculus
          • Introduction to Modern Physics with Calculus
  • Blog
  • About Us
  • Contact Us

College Cosmology


EQUATIONS


   INFORMATION

Cosmological Redshift

$$ \\ \large Z = \frac{v}{c} = \frac{\Delta \lambda}{\lambda_0} = \frac{\lambda - \lambda_0}{\lambda_0} $$
\( \\ \textbf{Z} = redshift \\ \textbf{v} = velocity \hspace{4 pt}(m \hspace{2 pt} s^{-1}) \\ \textbf{c} = speed \hspace{4 pt}of \hspace{4 pt} light \hspace{4 pt}(3.00 \hspace{2 pt} x \hspace{2 pt} 10^{8} \hspace{2 pt} m \hspace{2 pt} s^{-1}) \\ {\lambda} = observed \hspace{4 pt} wavelength \hspace{4 pt}(m \hspace{2 pt} s^{-1}) \\ {\lambda_0} = emitted \hspace{4 pt} wavelength \hspace{4 pt}(m \hspace{2 pt} s^{-1}) \\ \)
 
Picture

Expansion Properties

$$ \large Z + 1 = \frac{\lambda}{\lambda_0} = \frac{D}D_0{} $$
\( \\ \textbf{Z} = redshift \\ {\lambda} = wavelength \hspace{4 pt} now \hspace{4 pt} (m) \\ {\lambda_0} = wavelength \hspace{4 pt} when \hspace{4 pt} emitted \hspace{4 pt} (m) \\ \textbf{D} = distance \hspace{4 pt} to \hspace{4 pt} object \hspace{4 pt} now \hspace{4 pt} (ly) \\ \textbf{D_0} = distance \hspace{4 pt} to \hspace{4 pt} object \hspace{4 pt} back \hspace{4 pt} then \hspace{4 pt} (ly) \\ \)
 
Picture

Hubble's Law

$$ \large v = H_0 d$$
\( \\ \textbf{v} = velocity \hspace {4 pt} (km \hspace{2 pt} s^{-1}) \\ \textbf{H_0} = Hubble's \hspace {4 pt}constant \\ \hspace{12 pt}(\sim 68 \hspace{4 pt}km \hspace{2 pt} s^{-1} \hspace{2 pt} Mpc^{-1}) \\ \textbf{D} = proper \hspace{4 pt} distance \hspace{4 pt} (km) \)
 
Picture
Picture

Planck Time

$$ \large t_p \equiv \sqrt{\frac{\hbar G}{c^5}} $$

\( \textbf{t_p} = Planck \hspace{4 pt} time \hspace{4 pt} (5.391 \hspace{2 pt} x \hspace{2 pt} 10^{-44} \hspace{2 pt} s) \\ {\hbar} = reduced \hspace{4 pt} Planck \hspace{4 pt} constant \\ \hspace{5 pt} (1.055 \hspace{2 pt} x \hspace{2 pt} 10^{-34} \hspace{2 pt} J \hspace{2 pt} s) \\ \textbf{G} = gravitational \hspace{4 pt} constant \\ \hspace{8 pt} (6.674 \hspace{2 pt} x \hspace{2 pt} 10^{-11} \hspace{2 pt} m^3 \hspace{2 pt} kg^{-1} \hspace{2 pt} s^{-2}) \\ \textbf{c} = speed \hspace{4 pt} of \hspace{4 pt} light \hspace{4 pt} (3.00 \hspace{2 pt} x \hspace{2 pt} 10^8 \hspace{2 pt} m \hspace{2 pt} s^{-1}) \)
 
Picture

Mass Density of Radiation

$$ \large \rho_{rad} = \frac{4 \sigma T^4}{c^3} $$

\( {\rho_{rad}} = mass \hspace{4 pt} density \hspace{4 pt} of \hspace{4 pt} radiation \hspace{4 pt} (kg \hspace{2 pt} m^{-3}) \\ {\sigma} = Stefan-Boltzmann \hspace{4 pt} constant \hspace{4 pt} \\ \hspace{4 pt} (5.670 \hspace{2 pt} x \hspace{2 pt} 10^{-8} \hspace{2 pt} W \hspace{2 pt} m^{-2} \hspace{2 pt} K^{-4}) \\ \textbf{T} = temperature \hspace{4 pt} (K) \\ \textbf{c} = speed \hspace{4 pt} of \hspace{4 pt} light \hspace{4 pt} (3.00 \hspace{2 pt} x \hspace{2 pt} 10^8 \hspace{2 pt} m \hspace{2 pt} s^{-1}) \)
 
Picture

Critical Density

$$ \large \\ \rho_c = \frac{3 {H_0}^2}{8\pi G} $$

\( {\rho_c} = critical \hspace{4 pt} density \hspace{4 pt} (kg \hspace{2 pt} km^{-3}) \\ \textbf{H_0} = Hubble's \hspace{4 pt} constant \hspace{8 pt} \\ hspace{4 pt} (\sim 68 \hspace{4 pt}km \hspace{2 pt} s^{-1} \hspace{2 pt} Mpc^{-1}) \\ \textbf {G} = gravitational \hspace{4 pt} constant \hspace{4 pt} \\ \hspace{8 pt} (6.67384 \hspace{2 pt} x \hspace{2 pt} 10^{-11} \hspace{2 pt} m^3 \hspace{2 pt} kg^{-1} \hspace{2 pt} s^{-2}) \)
 
Picture
Picture

Density Parameter

$$ \large \Omega_0 = \frac{\rho_o}{\rho_c} $$

\( {\Omega_0} = density \hspace{4 pt} parameter \\ {\rho_0} = actual \hspace{4 pt} mass \hspace{4 pt} density \hspace{4 pt} of \hspace{4 pt} the \\ \hspace{9 pt} universe \hspace{4 pt} (kg \hspace{2 pt} m^{-2}) \\ {\rho_c} = critical \hspace{4 pt} density \hspace{4 pt} (kg \hspace{2 pt} m^{-2}) \)
 
Picture

Cross Section

$$ \large \\ \sigma = \left( \frac{I_s}{I_i} \right) \frac{1}{N} = \frac{P}{N} $$
\( \\ {\sigma} = cross \hspace{4 pt} section \hspace{4 pt} (m^2) \\ \textbf{I_s} = intensity \hspace{4 pt} of \hspace{4 pt} scattered \hspace{4 pt} particles \\ \hspace{6 pt} (W \hspace{2 pt} m^{-2} \hspace{2 pt} s^{-1}) \\ \textbf{I_i} = intensity \hspace{4 pt} of \hspace{4 pt} incident \hspace{4 pt} particles \\ \hspace{6 pt} (W \hspace{2 pt} m^{-2} \hspace{2 pt} s^{-1}) \\ \textbf{N} = number \hspace{4 pt} density \hspace{4 pt} of \hspace{4 pt} target \hspace{4 pt} particles \\ \hspace{7 pt} (m^{-2}) \\ \textbf{P} = probability \hspace{4 pt} of \hspace{4 pt} interaction \)
 
Picture

Velocity Coefficient

$$ \large \beta = \frac{v}{c} $$

\( {\beta} = velocity \hspace{4 pt} coefficient \\ \textbf{v} = velocity \hspace{4 pt} (m \hspace{2 pt} s^{-1}) \\ \textbf{c} = speed \hspace{4 pt} of \hspace{4 pt} light \hspace{4 pt} (3.00 \hspace{2 pt} x \hspace{2 pt} 10^8 \hspace{2 pt} m \hspace{2 pt} s^{-1}) \)
 
Picture

Lorentz Factor

$$ \large \gamma = \frac{1}{\sqrt{1 - \beta^2}} $$
\( \\ {\gamma} = Lorentz \hspace{4 pt} factor \\ {\beta} = velocity \hspace{4 pt} coefficient \)
 
Picture

Lorentz Transformations

$$ \large \\ t' = \gamma \left(t - \frac{vx}{c^2} \right ) \\ x' = \gamma \hspace{2 pt} (x - vt) \\ y' = y \\ z' = z $$
\( \\ \textbf{t | t'} = time \hspace{4 pt} measured \hspace{4 pt} by \\ \hspace{14 pt} observer | observer' \hspace{4 pt} (s) \\ {\gamma} = Lorentz \hspace{4 pt} factor \\ \textbf{v} = measured \hspace{4 pt} scalar \hspace{4 pt} velocity \hspace{4 pt} (m \hspace{2 pt} s^{-1}) \\ \textbf{x|x'} = distance \hspace{4 pt} in \hspace{4 pt} x-direction \hspace{4 pt} as \\ \hspace{18 pt} measured \hspace{4 pt} by \hspace{4 pt} observer \hspace{4 pt} / \\ \hspace{17 pt} observer' \hspace{4 pt} (m) \\ \textbf{c} = speed \hspace{4 pt} of \hspace{4 pt} light \hspace{4 pt} (3.00 \hspace{2 pt} x \hspace{2 pt} 10^8 \hspace{2 pt} m \hspace{2 pt} s^{-1}) \\ \textbf{y|y'} = distance \hspace{4 pt} in \hspace{4 pt} y-direction \hspace{4 pt} as \\ \hspace{18 pt} measured \hspace{4 pt} by \hspace{4 pt} observer \hspace{4 pt} / \\ \hspace{16 pt} observer' \hspace{4 pt} (m) \\ \textbf{z|z'} = distance \hspace{4 pt} in \hspace{4 pt} z-direction \hspace{4 pt} as \\ \hspace{18 pt} measured \hspace{4 pt} by \hspace{4 pt} observer \hspace{4 pt} / \\ \hspace{16 pt} observer' \hspace{4 pt} (m) \\ \)
 
Picture

Time Dilation

$$ \large \Delta t' = \gamma \Delta t $$
\( \\ {\Delta t} = time \hspace{4 pt} between \hspace{4 pt} two \hspace{4 pt} co-local \hspace{4 pt} events \\ \hspace{14 pt} for \hspace{4 pt} an \hspace{4 pt} observer \hspace{4 pt} in \hspace{4 pt} some \hspace{4 pt} intertial \\ \hspace{14 pt} frame \hspace{4 pt}(s)\\ {\Delta t'} = time \hspace{4 pt} between \hspace{4 pt} two \hspace{4 pt} co-local \\ \hspace{14 pt} events \hspace{4 pt} for \hspace{4 pt} another, \hspace{4 pt} inertially \\ \hspace{14 pt} moving \hspace{4 pt} with velocity \hspace{4 pt} \textbf{v}, w.r.t \hspace{4 pt} the \\ \hspace{11 pt} \hspace{4 pt} former \hspace{4 pt} observer \hspace{4 pt} (s)\\ {\gamma} = Lorentz \hspace{4 pt} factor\\ \)
 
Picture

Length Contraction

$$ \large L = \frac{L_0}{\gamma} $$
\( \\ \\ \textbf{L} = length \hspace{4 pt} measured \hspace{4 pt} by \hspace{4 pt} observer \\ \hspace{6 pt} travelling \hspace{4 pt} at \hspace{4 pt} velocity \hspace{4 pt}\textbf{v} \hspace{4 pt} (m) \\ \textbf{L_0} = proper \hspace{4 pt} length \hspace{4 pt} (m) \\ {\gamma} = Lorentz \hspace{4 pt} factor \)
 
Picture









Return to College Astronomy



Copyright © 2013 - • EQNS